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Abstract

Pricing for mortgage and mortgage-backed securities is complicated due to the stochastic and

interdependent nature of prepayment and default risks. This paper presents a uni…ed economic

model of the contingent claims and competing risks of mortgage termination by prepayment and

default. I adopt a proportional hazard framework to analyze these competing and interdependent

risks in a model with time-varying covariates. The paper incorporates a stochastic interest rate

model into the hazard function for prepayment.

The empirical results reported in the paper provide new evidence about the ruthlessness of

default and prepayment behavior and the sensitivity of these decisions to demographic as well

as …nancial phenomena. The results also illustrate that evaluating the interest rate contingent

claims with a stochastic term structure has e¤ects not only on predicting the mortgage prepayment

behavior but also on predicting the mortgage default behavior.

Key Words: hazard models, mortgage termination, semiparametric estimation, stochastic term

structure



Mortgage Termination: An Empirical Hazard Model

with Stochastic Term Structure

Pricing for mortgage and mortgage-backed securities is complicated due to the stochastic and

interdependent nature of prepayment and default risks. It is widely accepted that mortgages can

be viewed as ordinary debt instruments with various options attached to them. Default is a put

option; the borrower sells his house back to the lender in exchange for eliminating the mortgage

obligation. Prepayment is a call option; the borrower exchanges the unpaid balance on the debt

instrument for a release from further obligation.

The contingent claims model, developed by Black and Scholes (1973) and Cox, Ingersoll, and

Ross (1985), provides a rationale for borrower behavior, and a number of studies have applied

this model to the mortgage market (e.g., Dunn and McConnell 1981, Buser and Hendershott 1984,

Brennan and Schwartz 1985, Kau, Keenan, Muller, and Epperson 1992, 1995, Harding 1994, Quigley

and Van Order 1995). Hendershott and Van Order (1987) and Kau and Keenan (1995) provide

surveys of these models and results.

Several recent empirical studies have applied the Cox proportional hazard model (Cox and Oakes

1984) to evaluate mortgage default or prepayment risk (e.g., Green and Shoven 1986, Schwartz and

Torous 1989, Quigley and Van Order 1990, 1995). Instead of solving for the unique critical values

of the state variables in the contingent claims model, the proportional hazard model assumes that

at each point in time during the mortgage contract period, the mortgage has a certain probability

of termination, conditional upon the survival of the mortgage. The hazard function in this model

is de…ned as the product of a baseline hazard and a set of time-varying covariates. These covariates

need not be limited to the option value itself; they may include other important determinants of

behavior. The proportional hazard model can thus incorporate reasonable mortgage prepayment

and default behavior that would be considered “sub-optimal” under the pure contingent claims
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framework.

However, most of the empirical econometric models in mortgage studies evaluate the prepayment

option with deterministic term structures. This is appropriate if there are no transactions costs in

the mortgage termination, or if the borrowers have perfect information about future interest rate

movement. Obviously, neither of the two assumptions is realistic in the mortgage market.

In this paper, I present an algorithm to incorporate a binomial mean-reverting interest rate

model into the proportional hazard framework to analyze mortgage prepayment and default risks

empirically. In the empirical analysis, I compare the results of the model using this stochastic term

structure with similar models using a deterministic term structure.

The paper is organized as follows: section 1 reviews brie‡y the contingent claims model, as well

as the proportional hazard model with competing risks. Section 2 describes the data used in this

analysis and presents the empirical model for mortgage termination by prepayment and default.

Section 3 presents an extensive empirical analysis. Section 4 is the conclusion.

1. The Contingent Claims and Competing Risks

A starting point for studying mortgage termination is the contingent claims model. It has been

well accepted that prepayment in the mortgage contract can be viewed as a call option, and default

in the mortgage contract can be viewed as a put option. Well-informed borrowers in a perfectly

competitive market will exercise either of these two options when they can thereby increase their

wealth. Absent either transactions costs or reputation costs which reduce credit ratings, these

individuals can increase their wealth by defaulting on a mortgage when the market value of the

mortgage exceeds the value of the house. Similarly, by prepaying the mortgage when market value

exceeds par, they can increase wealth by re…nancing. However, if a borrower chooses to prepay the

mortgage, he forfeits the opportunity to exercise either prepayment or default option in the future.
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Likewise, if a borrower decides to default the mortgage, he also forfeits the opportunity to exercise

the prepayment or default option in the future.

Pricing these options and also determining when a borrower exercises either option require

specifying the underlying state variables and parameters that determine the value of the contract

and then deducing the decision rule that maximizes borrower wealth. For residential mortgages,

the key variables are the spot interest rate, r, and the value of the house, H. It is commonly

assumed (e.g., Kau and Keenan 1995) that r and H are described respectively by the following

stochastic processes:

dr = ° (µ ¡ r)dt + ¾r
p

rdzr; (1.1)

dH

H
= (r ¡ d)dt + ¾HdzH ; (1.2)

dzrdzH = ½ (r;H; t) dt: (1.3)

Here µ is the mean value of the interest rate. ° is the rate of convergence for the interest rate. d is

the imputed rent payout (“dividend”) rate. ¾r
p

r and ¾H are the instantaneous standard deviations

of the term structure and the house price, respectively. dzr and dzH are standard Wiener process

with E [dz] = 0, and E
£
dz2

¤
= dt. ½ is the correlation between the disturbances to the term

structure and the disturbances to the house price.

Under the perfect capital market assumption together with the Local Expectations Hypothesis,

it has been shown (see Kau, Keenan, Muller, and Epperson 1995) that the value of the mortgage

M satis…es
1
2r¾

2
r

@2M

@r2
+ ½

p
rH¾r¾H

@2M

@r@H
+ 1

2H
2¾2H

@2M

@H2
+ ° (µ ¡ r)

@M

@r

+(r ¡ d)H
@M

@H
+

@M

@t
¡ rM = 0:

(1.4)

This follows almost directly from the model of Black and Scholes (1973). From equation (1.4)
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together with the appropriate boundary conditions, we can solve for the optimal values of the state

variables r¤ and H¤. This leads to a decision rule about mortgage termination: default when the

house value falls to H¤; prepay when interest rate declines to r¤. Now, at each value of the house,

H, the homeowner can compute the extent to which the default option is in the money, given the

initial contract terms. Similarly, the owner can compute the extent to which the prepayment option

is in the money at each interest rate, r.

Thus, the di¤erence between the outstanding mortgage balance and H¤ de…nes the extent to

which the put option must be in the money for optimal default, and the di¤erence between the

mortgage coupon rate and r¤ de…nes the extent to which the call option must be in the money for

optimal prepayment.

Of course, this theory assumes that all observations on mortgage termination behavior are gen-

erated by rational, fully-informed mortgage holders who face zero transactions costs and have no

other motives for prepayment or default. Clearly other “trigger events,” such as job changes and

unemployment a¤ect the probability that a mortgage will be terminated. Together with transac-

tions costs, reputation costs, and borrower’s expectation for the future interest rates movement,

they determine the extent to which the option must be in the money at exercise. The proportional

hazard model provides a convenient framework for considering empirically the exercise of these

options.

The Cox proportional hazard model (Cox and Oakes 1984) is de…ned as

h (tij; z) = h0 (tij) exp (z (tij)¯) ; (1.5)

where j denotes types of the competing risks, z (t) is a set of time-varying covariates (which need not

be limited to the option value itself; they may include other important determinants of behavior),
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and h0 (¢) is the baseline hazard re‡ecting the age-related amortization feature of mortgage.

The most popular estimation approach for proportional hazard model is the Cox partial likeli-

hood approach (CPL) (see Cox and Oakes 1984). However, CPL is appropriate for the proportional

hazard model with competing risks only if these competing risks are independent. Furthermore, if

the data collected are in discrete groups and if there are heavy ties in the discrete index of failure

time, then CPL generates a biased estimator for the hazard rate (These limitations of CPL have

been discussed by Cox and Oakes 1984, and Kalb‡eisch and Prentice 1980).

A major concern in actually estimating hazard models with a large body of economic data

is the computational di¢culty involved. Computational time can become a real constraint when

the model involves competing risks and time-varying covariates. To estimate a useful model for

the housing market requires either dramatically limiting sample sizes, arbitrarily and unreasonably

aggregating time intervals, or …nding a way to aggregate observations on individual behavior.

Deng, Quigley, and Van Order 1995 introduced a semi-parametric estimation (SPE) approach1

for the proportional hazard model with competing risks and time-varying covariates. To estimate

the hazard model with SPE, …rst we partition the loan level mortgage data set into homogeneous

cells based on certain individual characteristics of the loan, e.g., mortgage initial loan-to-value ratio,

geographic location of the property, year of mortgage origination, etc. For each cell, we estimate

the empirical default and prepayment hazard functions using the Kaplan-Meier approach. Then

we map these estimated hazard functions to the original loan level mortgage data set. Finally, we

regress the log estimated hazard functions on a set of covariates (e.g., option value covariates and

other important determinants of borrower’s behavior) and the …xed e¤ects of mortgage duration2.

The semi-parametric approach has following desirable features when compared to the Cox par-

tial likelihood approach (CPL). First, the SPE can model the interdependent competing risks in

a straightforward manner. Second, the SPE can be used to estimate the baseline simultaneously
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with the covariates. Third, ties in failure time are not a problem in the SPE. Fourth, it allows

heterogeneous unobserved error terms to be incorporated into the competing risks hazard model.

Last but not least, because the SPE transforms the proportional hazard function into a regression

framework, it is far less demanding in computation.

This latter advantage should not be underestimated when dealing with a large sample size of

duration data with time-varying covariates.

2. The Model

2.1. The Data

The data set used in the empirical analysis is the individual mortgage history data maintained by the

Federal Home Loan Mortgage Corporation (Freddie Mac). This administrative data base contains

1,489,372 observations on single family mortgage loans issued between 1976 to 1983 and purchased

by Freddie Mac. All are …xed-rate, level-payment, fully-amortized loans, most with thirty-year

terms. The mortgage history period ends in …rst quarter of 1992. For each mortgage loan, the

available information includes the year and month of origination and termination (if it has been

closed), indicators of prepayment or default, the purchase price of the property, the original loan

amount, the initial loan-to-value ratio, the mortgage contract interest rate, the monthly principal

and interest payment, the state, the region and the major metropolitan area in which the property

is located. The data set also reports the borrower’s monthly gross income at origination. Table 1

describes the variables from the Freddie Mac data base used in this analysis.

[Table 1 is about here]

The market rate used in this analysis is the average interest rate charged by lenders on new …rst

mortgages reported by Freddie Mac’s quarterly market survey. This mortgage interest rate varies
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by quarter across …ve major US regions.

The analysis also uses a macro economic variable, unemployment rate, which is measured at the

state level. State unemployment data are reported in various issues of: US Department of Labor,

“Employment and Unemployment in States and Local Areas (Monthly)” and in the “Monthly Labor

Review.”

2.2. An Option-based Proportional Hazard Model for Mortgage Termination

The competing risks of mortgage termination consist of two parts: a prepayment risk and a default

risk. The function specifying prepayment risk estimates the probability that a mortgage loan is

prepaid during any period, conditional upon survival to that particular period. Similarly, the

default function estimates the conditional probability of default during any period. The model

assumes that borrowers make the prepayment or default decision based upon market conditions

to maximize their net wealth. Following the contingent claims model discussed in section 1, the

empirical model speci…es the probability of exercising these options as a function of the extent to

which the options are “in the money” and the “trigger events” that a¤ect the decision about how

far the option needs to be into the money in order for it to be optimal to exercise. For instance,

an increase in the probability of negative equity will increase the probability that the put option

is in the money, hence increase the probability of default. Analogously, the ratio of the present

discounted market value of the unpaid balance to the par value of the mortgage measures the extent

to which the call option is in the money. The variable, state level unemployment, is an example of

trigger event.

The key variables are those measuring the extent to which the put and call options are in the

money.

A typical way to value the call option in empirical real estate …nance research is to compute
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the ratio of the present discounted value of the unpaid mortgage balance at the contract interest

rate relative to the value discounted at the current market mortgage rate, assuming a deterministic

term structure. In this analysis, I de…ne such call option variable as POPTION .

Speci…cally, POPTION for the lth loan observation is de…ned as

poptionl =

terml¡¿ iX

t=1

mopipmtl £ 3

(1 + mktrate!l ;�l+¿ i=400)t
¡
terml¡¿ iX

t=1

mopipmtl £ 3

(1 + noteratel=400)t

terml¡¿ iX

t=1

mopipmtl £ 3

(1 + mktrate!l;�l+¿ i=400)t

= 1 ¡
mktrate!l;�l+¿ i £

0
@1 ¡

Ã
1

1 + noteratel=400

!terml¡¿ i
1
A

noteratel £
0
@1 ¡

Ã
1

1 + mktrate!l;�l+¿ i=400

!terml¡¿ i
1
A

;

(2.1)

where ¿ i is loan age measured in quarters, !l is a vector of indices for geographical location, �l is

loan origination time, mopipmtl is monthly principal and interest payment, noteratel is mortgage

contract rate, mktrate!l;�l+¿ i is the current local market mortgage rate, and terml is mortgage

loan term calculated by

terml =
log

µ
mopipmtl ¡ origamtl £ (noteratel=1200)

mopipmtl

¶

log

µ
1

1 + noteratel=1200

¶
£ 3

; (2.2)

where origamtl is original loan amount.

To value the put option analogously, we need to measure the market value of each house quar-

terly and to compute homeowner equity quarterly. Obviously, we do not observe the course of

price variation for individual houses in the sample. In this analysis, I use the weighted repeat

sales housing price index (WRS) estimated by Abraham and Schauman (1991). The WRS index

provides estimates of the course of housing prices in each metropolitan area. It also provides an
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estimate of the variance in price for each house in the sample, by metropolitan area and elapsed

time since purchase.

Based on estimates of the mean and variance of individual house prices, together with the unpaid

mortgage balance (computed from the contract terms), I estimate the distribution of homeowner

equity quarterly for each observation. In particular, \EQR" is the estimate of equity ratio assuming

prices of all houses in the MSA grow at the mean rate, and \PNEQ" is the probability that equity

is negative, i.e., the probability that the put option is in the money.

Speci…cally, equity ratio for the lth loan observation is de…ned as:

eqrl =
mktvaluel ¡ pdvunpblcl

mktvaluel

=

purpricel £
msa!l ;�l+¿ i
msa!l ;�l

¡
terml¡¿ iX

t=1

mopipmtl £ 3

(1 + noteratel=400)t

purpricel £
msa!l;�l+¿ i
msa!l;�l

= 1 ¡
(LTV=100) £

0
@1 ¡

Ã
1

1 + noteratel=400

!terml¡¿ i
1
A

Ã
msa!l;�l+¿ i
msa!l;�l

!
£

0
@1 ¡

Ã
1

1 + noteratel=400

!terml
1
A

;

(2.3)

where purpricel is the purchasing price of the house at the time of loan initiation, mktvaluel is the

estimated current market price of the house based on the mean value of WRS index in the MSA,

and pdvunpblcl is the present discounted value of the remaining loan balance.

The probability of negative equity, pneq, is thus

pneql = ncdf

0
@ log (pdvunpblcl) ¡ log (mktvaluel)q

e2!l;�l+¿ i

1
A ; (2.4)

where ncdf (¢) is cumulative standard normal distribution function, and e2!l;�l+¿ i is the variance of

the WRS index.
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To estimate the model with SPE, …rst I calculate the call-option and put-option covariates for

each individual loan and construct the covariates matrix zj (¿;�; !), where zj (¿; �; !) consists of

the call-option covariate, POPTION (or LATPOPTION3), the put-option covariate, PNEQ,

and its variation, LOG(PNEQ), the initial loan-to-value ratio, the payment-to-income ratio at the

origination, and the local unemployment rate. Then I map the covariates matrix zj (¿;�; !) to

the estimated “locally-smoothed” hazard function. Finally, I estimate the prepayment and default

functions using the approach described in appendix A.

2.3. Evaluating the Prepayment Option with a Binomial Mean-Reverting Interest Rate

Process

The prepayment option covariate, POPTION , de…ned in equation (2.1) was computed with a

deterministic term structure. This is appropriate only if there are no transactions costs in the

mortgage prepayment. However, prepaying a mortgage may hardly be a frictionless practice. For

example, there may be points charged for new loans, there may be costs for title insurance, and

there may be reappraisal fees, documentation fees, and escrow fees for re…nancing. Furthermore,

there are intangible costs such as time costs involved in the re…nancing. Because the …xed rate

mortgage has a remarkably lengthy term to maturity, it is inappropriate to assume that borrowers

have perfect information about the interest rate term structure. Therefore, it is inappropriate to

model the mortgage contingent claims with a deterministic term structure.

Black and Scholes (1973), and Cox, Ingersoll, and Ross (1985) introduced the mean-reverting

interest rate di¤usion function with a Brownian motion process to model stock and bond prices.

Since then, there have been several discrete-time models developed to approximate the stochastic

interest rate term structure movement. Among those discrete-time models are Ho and Lee (1986),

Nelson and Ramaswamy (1990), Hull and White (1990), and Tian (1992).
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In this paper, I adopt Tian’s Simpli…ed Binomial Process (SBP)4 to derive the prepayment

option value. The SBP is a mean-reverting binomial process with upper and lower boundaries to

prevent interest rates from having negative values. It is a path independent process and therefore

has a signi…cant computational advantage over other models. Tian (1992) also demonstrated that

the SBP is superior to other discrete-time models in numerical accuracy in estimating the market

interest rate movement.

Following Tian, a simple additive binomial lattice tree of the market interest rate can be con-

structed as follows:

Partition the time interval [t0; T ] into n equal distance sub-intervals. The length of each sub-

interval is 4t = (T ¡ t0) =n, e.g., if we de…ne 120 sub-intervals for a 30-year …xed rate mortgage,

then 4t is 0:25. Let ' =
p

r, where r is the current market rate. Let u and d be the respective

distances of ' jumping upward and downward from one sub-interval to the next, pij be the prob-

ability that ' jumps upward at the ith interval and jth node of the lattice tree, and (1 ¡ pij) be

the probability that ' jumps downward at the ith interval and jth node of the lattice tree, where

i = 0; 1; :::; (n ¡ 1), and j = ¡i;¡ (i ¡ 2) ; :::; (i ¡ 2) ; i.

Figure 1 illustrates such binomial lattice tree. It starts at t0 when the observed loan is ter-

minated. Let '0;0 =
p

r0;0, where r0;0 is the current local market interest rate5. In the next

sub-interval, ' may jump upward to '1;1 with the probability of p0;0, or downward to '1;¡1 with

the probability of (1 ¡ p0;0), where '1;1 = '0;0 + u0;0, and '1;¡1 = '0;0 ¡ d0;0. In sequence, from

'1;1, ' may jump upward to '2;2 with the probability of p1;1, or downward to '2;0 with the prob-

ability of (1 ¡ p1;1), where '2;2 = '1;1 + u1;1, and '2;0 = '1;1 ¡ d1;1. Similarly from '1;¡1, ' may

jump upward to '2;0 with the probability of p1;¡1, or downward to '2;¡2 with the probability of

(1 ¡ p1;¡1), where '2;0 = '1;¡1 + u1;¡1, and '2;¡2 = '1;¡1 ¡ d1;¡1.

[Figure 1 is about here]
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Note that '1;1 ¡ d1;1 = '1;¡1 + u1;¡1 = '2;0. Note also that ¢' and hence ¢r is independent

of time interval, i, and the node of the jump position, j. However, pij depends on both i and j,

i.e., the probability of interest rate jumping up or down varies from each time interval and node

of jump position.

Following Tian, we can derive the upper and lower boundaries of the lattice tree such that

rmin =

0
@

s
¾2r (1 ¡ ¸¢t)

4¸2¢t
+ µ ¡

Ã
¾r

2¸
p4t

!1
A
2

; (2.5)

rmax =

0
@

s
¾2r (1 ¡ ¸¢t)

4¸2¢t
+ µ +

Ã
¾r

2¸
p4t

!1
A
2

: (2.6)

Therefore, whenever the interest rate reaches the upper boundary, the probability of the interest

rate jumping up in the next time interval is zero. Similarly, whenever the interest rate reaches the

lower boundary, the probability of the interest rate jumping up in the next time interval is one.

Thus, the model eliminates the possibility of interest rates having negative values.

During the implementation process, depending on the length of ¢t, 'ij may just jump out of

the upper boundary at certain nodes, e.g., in Figure 1, '4;4 is going to jump out of upper boundary.

However, it can be shown that p3;3 is very close to zero. Consequently, we simply set p3;3 to be

zero. Similarly, at those nodes where 'ij jumps out of the lower boundary (such as '3;¡3 and '5;¡3

in Figure 1), we set pi¡1;j¡1 to be one.

Evaluating the prepayment option for each individual loan with this binomial interest rate

model is still a computationally intensive process. Instead of computing the POPTION assuming

a deterministic term structure as described in equation (2.1), I calculate the ratio, LATPOPTION ,

using the binomial interest rate lattice tree according to the following procedure:

First, for each individual loan, I calculate the remaining terms of mortgage payment from the
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time the loan is terminated (or censored), e.g., for a loan prepaid at the 20th quarter, the remaining

terms are 100 quarters.

Second, starting from the point when the decision of exercising options is to be made, i.e.,

the point when the observed individual loan is terminated (or censored), I compute forwardly the

interest lattice tree for the remaining contract terms and the associated probabilities at each node

of the tree such that

rij =

Ã
p

r00 +

Ã
i £ ¾r

p
¢t

2

!!2
; (2.7)

pij =
1

2
+

p
¢t

¾r
£

Ã
4¸µ ¡ ¾2r

8
p

rij
¡ ¸

p
rij

2

!
; (2.8)

i = 0; 1; 2; :::; (120 ¡ ¿ ¡ 1) ;

j = ¡i;¡ (i ¡ 2) ; :::; (i ¡ 2) ; i;

where r00 is the current local market mortgage rate at age ¿ when the mortgage is terminated.6

Third, I calculate the value of the prepayment option backward based on the interest rate lattice

tree and the associated probabilities7 such that

voptionij = 1 + pij £
Ã

voptioni+1;j+1
1 + rij

!
+ (1 ¡ pij) £

Ã
voptioni+1;j¡1

1 + rij

!
; (2.9)

i = 0; 1; 2; :::; (120 ¡ ¿ ¡ 1) ;

j = ¡i;¡ (i ¡ 2) ; :::; (i ¡ 2) ; i;

and

voption120¡¿ ;j = 1; (2.10)
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j = ¡ (120 ¡ ¿) ; ¡ (120 ¡ ¿ ¡ 2) ; :::; (120 ¡ ¿ ¡ 2) ; (120 ¡ ¿) :

Finally, I compute the ratio of the prepayment option, LATPOPTION ,8 such that

latpoptionl =

voption00 ¡
120¡¿X

t=1

1

(1 + noteratel=400)t

voption00
:

(2.11)

3. The Empirical Analysis

The empirical analysis is based upon the Freddie Mac individual mortgage history data described

in section 2.1. The analysis is con…ned to mortgage loans issued for owner occupancy, and includes

only those loans which were either closed or still active9 at the …rst quarter of 1992. In addition,

the analysis is con…ned to loans issued in 30 major metropolitan areas (MSAs). The sub-sample

contains a total of 489,372 observations. Loans are observed in each quarter from the quarter of

origination through the quarter of termination, maturation, or through 1992:I for active loans.

Figures 2 and 3 summarize the raw data used in the empirical analysis. Figure 2 displays the

conditional prepayment rate, separately by loan-to-value ratio (LTV), as a function of duration.

Conditional prepayment rates are slightly higher for higher LTV loans. Rates increase substantially

after the …rst …fteen quarters. Figure 3 displays raw conditional default rates by LTV. Again, default

rates increase substantially after about …fteen quarters. Note also that the default rates increase

dramatically with initial LTV. Default rates for loans with LTV above 95 percent are three or four

times higher than default rates for 90 to 95 percent LTV loans. The default rates for these latter

loans are, in turn, about …ve times as high as for those with LTV below 80 percent.

[Figure 2 is about here]

[Figure 3 is about here]

Finally, note that conditional default rates are quite low. Even for the riskiest class of loans,
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conditional default rates are no higher than four in a thousand in any quarter. Residential mortgages

are relatively safe investments (and simple random samples of mortgages are likely to contain very

few observations on default).

Tables 2 and 3 present a variety of models estimated by the SPE method. To estimate hazard

functions non-parametrically, the entire sample of 489,372 loans has been partitioned into 120 cells,

according to 30 major MSAs and 4 LTV groups. For each cell, there are 64 time intervals (measured

in quarter, from 76:II to 92:I, and normalized by setting 76:II equals 1). Empirical hazard rates

of prepayment and default have been calculated for every time interval in each cell based on the

entire sample. Then the estimated empirical hazard rates were mapped to 9,183 mortgage loans

which were randomly drawn from the total sample, assuming that the randomly-drawn sub-sample

has the same distribution as the population. The mapping is based on the geographic location, the

initial LTV, and the age of the observed individual loans.

Table 2 presents three alternative speci…cations using a deterministic term structure in the

prepayment function. All three models specify the prepayment and default functions as a seemingly

unrelated regression system. Besides the explicitly speci…ed interdependent competing risks in the

model, the interdependence between default and prepayment behavior is also re‡ected by the

correlations of unobserved error terms between the prepayment and default functions.

[Table 2 is about here]

The results show that …nancial motivation is of paramount importance in governing the pre-

payment and default behavior. For example, when the call option is in the money, the prepayment

hazard increases very substantially. Similarly a higher probability of negative equity increases the

default hazard and reduces the prepayment hazard. Note also that the probability of negative

equity is highly signi…cant and negatively associated with the prepayment hazard, verifying the

interdependence between prepayment and default behavior.
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The initial loan-to-value ratio is positive and highly signi…cant, particularly in the default

function, across all speci…cations. This variable, known at the time when mortgages are initiated,

may well reveal borrowers’ risk preferences.

The results also show that higher unemployment probability is associated with higher default

risks. However, it is also associated with lower prepayment rates — indicating that liquidity

constraints (which make re…nancing more di¢cult for unemployed households) keep them from

exercising in-the-money call options.

Model 2 expands model 1 to include a variable measuring the initial payment-to-income ratio.

This variable is negative and signi…cant in the default function. A smaller mortgage payment

relative to income generally indicates that housing is a smaller fraction of the borrower’s investment

portfolio. More sophisticated investors, such as these borrowers, are apparently more likely to

behave in a ruthless fashion in the face of equity declines.

Model 3 imposes the constraint that as the probability of negative equity ratio approaches zero,

then the probability of default also approaches zero.10 The result is basically similar to that in

model 2, except that unemployment becomes insigni…cant in the default function.

Models 4 to 6 in Table 3 are similar to models 1 to 3 in Table 2 except that the variable

LATPOPTION measures prepayment options using the binomial mean-reverting interest rate

model described in section 2.3. All three models assume that the mean value of the interest rate

process, µ, is ten percent; the rate of convergence, ¸, is eight percent; the interest rate volatility,

¾r, is four percent; and the length of sub-interval, 4t, is 0:25. From equations (B.2) to (B.8), it

can be shown that the probability of interest rate jumping up, p, approaches to one when interest

rate, r, reaches 0:007633, and p approaches to zero when interest rate, r, jumps up to 1:1824. From

equations (B.6) and (B.7), we can calculate that the jump size, ¢', is 0:01.

[Table 3 is about here]
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The results indicate that the prepayment behavior is less sensitive to the changing of estimated

value of the prepayment option when such value is computed with a stochastic term structure. The

negative correlation between prepayment and default functions becomes more signi…cant in models

with stochastic term structure. To observe the di¤erence between these two models, it is useful to

compare the simulated unconditional prepayment and default rates based on estimates from these

two models.

Figures 4 and 5 illustrate the di¤erence between hazard rates estimated from the model using a

stochastic interest rate term structure, and the hazard rates estimated from the model using a de-

terministic interest rate term structure.11 The solid lines are the average cumulative unconditional

default and prepayment rates simulated from the model where prepayment options are evaluated

with a binomial mean-reverting interest rate model. The dotted lines are the average cumulative

unconditional default and prepayment rates simulated from the model where prepayment options

are evaluated with a deterministic term structure.

[Figure 4 is about here]

[Figure 5 is about here]

Figure 4 shows that the predicted cumulative prepayment rates are higher in the model using a

stochastic interest rate term structure.12 Although the variable measuring the prepayment option

seems not playing a role in the default function, Figure 5 indicates that using the binomial mean-

reverting interest rate model to compute the value of prepayment option a¤ects predicting default

hazard rates as well. This fact also illustrates the interdependence between these two competing

risks.13
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4. Conclusion

This paper has presented a uni…ed model of the contingent claims and competing risks of mortgage

termination by prepayment and default. The model considers these two hazards as interdependent

competing risks and estimates them jointly. The model is estimated using a semi-parametric

estimation approach (SPE) introduced by Deng, Quigley, and Van Order (1995). As shown, the

SPE has several important advantages over the more familiar Cox Partial Likelihood approach

when applied to problems of this nature.

The computational advantage of the SPE permits the empirical model to incorporate a binomial

mean-reverting interest rate model into the prepayment hazard function. Using the stochastic term

structure enhances the empirical hazard model in analyzing mortgage holders’ rational behavior.

The substantive results of the analysis provide powerful support for the contingent claims model

which predicts the exercise of …nancial options. The …nancial value of the call option is strongly

associated with exercise of the prepayment option, and the probability that the put option is in

the money is strongly associated with exercise of the default option. The results illustrate that

introducing volatility and uncertainty about future interest rate movement has e¤ects not only on

predicting mortgage prepayment behavior, but also on predicting default behavior. The results

also provide strong support for the interdependence of the decisions to prepay and to default on

mortgage obligations.

In addition, the results indicate that liquidity constraints play an important role in the exercise

of options in the mortgage market. Ceteris paribus, mortgage holders who are at greater risk for

unemployment (as measured by the unemployment rate in their state of residence) are less likely to

exercise in-the-money prepayment options. Those who are more likely to have low levels of equity

are also less likely to exercise prepayment options when it is in their …nancial interest to do so. All

three of these results are explicable, not by option theory, but rather by liquidity constraints which
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arise from quali…cation rules typically enforced by lenders in mortgage re…nance.

Finally, the results suggest that, holding other things constant, those who have chosen high

initial LTV loans are more likely to exercise options in the mortgage market – prepayment as well

as default. Further, those whose income, wealth, or housing demands permit them to choose low

initial payment-to-income levels seem consistently more likely to behave ruthlessly in the exercise

of default options. It appears that these factors, known at the time mortgages are issued, also

re‡ect investor preferences for risk and investor sophistication in the market for mortgages on

owner-occupied housing.
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Appendix

A. A Semi-parametric Estimator for The Proportional Hazard Model with Com-

peting Risks and Time-varying Covariates

This section brie‡y discusses the semi-parametric estimator introduced by Deng, Quigley, and Van

Order (1995).

Let T be a continuous random variable, measuring the duration of stay, e.g., the length of time
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since a mortgage was originated. If each individual enters the state at the same calendar time (i.e.,

all individuals take out mortgages on the same day), then there is no di¤erence between duration

and calendar time. However, in most situations, duration is not the same as calendar time.

De…ne

F (t) = Pr(T ¸ t) (A.1)

as the survivor function. The probability density function of the random variable t is:

f(t) = lim
4t!0+

Pr (t � T < t + 4t)

4t

=
¡dF (t)

dt
:

(A.2)

De…ne a hazard function that speci…es the instantaneous rate of failure at T = t conditional

upon survival to time T such that

h(t) = lim
4t!0+

Pr (t � T < t + 4tjT ¸ t)

4t

=
f (t)

F (t)

=
¡d lnF (t)

dt
:

(A.3)

The Cox proportional hazard model (Cox and Oakes 1984) is de…ned as

h (tij; z) = h0 (tij) exp (z (tij)¯) ; (A.4)

where j denotes types of the competing risks, z (t) is a set of time-varying covariates, and h0 (¢) is

the baseline hazard.

For most empirical applications, duration data are collected in discrete form. Therefore, it is

necessary to transform the above continuous model into a grouped discrete duration model.
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De…ne T 2 R+ as a duration variable. Let Ti (i = 1; 2; :::; q) be the discrete time intervals that

partition the support of T . Let

hj (t; Z) = h0j (t)
h
exp

³
Zj (t)¯j

´i
´j (A.5)

be the hazard rate of duration t, where j = 1; 2; :::; J is the type of competing risk, h0j (¢) is a

baseline hazard function, exp
³
Zj (t)¯j

´
is a proportionality factor, and ´j is an error term with a

non-negative distribution.

A log integrated hazard function for risk type j can be constructed:

log

2
64
TiZ

Ti¡1

hj (t; Zj) dt

3
75 = Zj (Ti)¯j + °j (Ti) + "j; (A.6)

where

°j (Ti) = log

2
64
TiZ

Ti¡1

h0j (t)dt

3
75 ; (A.7)

and

"j = log ´j;

j = 1; 2; :::; J; i = 1; 2; :::; q;

given that Zj (t) is constant between Ti¡1 and Ti.

The left-hand side of equation (A.6) is typically not directly observable in micro data. We

can, however, use the “local smoothing” technique, developed in the literature on non-parametric

methods, to estimate individual hazard functions based on the empirical distribution of the hazard

functions. Partition the covariate matrix Z into K distinct matrices Z1; :::; ZK . The kth subgroup

contains Mk observations. M1 + M2 + ::: + MK = N , where N is the total sample size. For each
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subgroup, estimate the hazard rate such that bhjkt =
njkt
Skt

, where njkt is the number of individuals

who fail in the tth period with type j in the kth subgroup, and Skt is the total number of individuals

surviving to the tth period in the kth subgroup.14

Now replacing the left-hand side of equation (A.6) with the smoothed log hazard function,

log
Z Ti

Ti¡1

bhjk (t; Zjk) dt, yields

log

2
64
TiZ

Ti¡1

bhjk (t; Zjk)dt

3
75 = Zjk (Ti)¯j + °j (Ti) + "j + ujk (Ti) ; (A.8)

j = 1; 2; :::; J; k = 1; 2; :::;K; i = 1; 2; :::; q;

where ujk (Ti) = log

"Z Ti

Ti¡1

bhjk (t; Zjk)dt

#
¡ log

"Z Ti

Ti¡1
hjk (t; Zjk)dt

#
.

The covariance of the " captures the correlation among competing risks which is not explicitly

speci…ed in the model. Equation (A.8) is a seemingly unrelated regression system which can be

estimated by the approach proposed by Zellner (1962).

Deng, Quigley, and Van Order (1995) have shown that the SPE is consistent and the rate of

convergence for this non-parametric estimator is N¡(2=5).

B. A Simpli…ed Binomial Mean-Reverting Interest Rate Process

This section summarizes the Simpli…ed Binomial Process (SBP) introduced by Tian (1992).

To evaluate the interest rate contingent claim in the mortgage prepayment, the instantaneous

spot rate is assumed to contain all information about future interest rates and thus drives the

entire term structure. Following Cox, Ingersoll, and Ross (1985), the short-term interest rate, r, is

assumed to have the following stochastic process:

dr = ¸(µ ¡ r)dt + ¾r
p

rdz; (B.1)
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where µ is the mean value of interest rate, ¸ is the rate of convergence for the interest rate, ¾r
p

r

measures the volatility of interest rate, dz is a standard Wiener process with E [dz] = 0, and

E
£
dz2

¤
= dt. Both ¸ and ¾r are positive constants.

The key to constructing the Tian simpli…ed binomial process to approximate a mean-reverting

di¤usion process is path independence. In other words, the interest rate level must be the same

after an upward move followed by a downward move as it is after a downward move followed by

an upward move. Such a binomial interest rate lattice tree is computationally e¢cient since the

number of nodes in the tree increases only linearly with the number of time steps.

To construct a path independent binomial lattice tree, it is necessary to transform the interest

rate process in equation (B.1) into a form that has a constant volatility. A typical transformation

for this process is simply

' =
p

r: (B.2)

Thus, equation (B.1) becomes

d' = qdt + Àdz; (B.3)

where

q = ¸(µ ¡ r)
@'

@r
+

¾2r

2

@2'

@r2

=
®1
'

¡ ®2';

(B.4)

®1 =
4¸µ ¡ ¾2r

8
; ®2 =

¸

2
; (B.5)

and

À =
¾r
2

: (B.6)
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In general, for a mean-reverting path independent binomial process which converges to the

process (B.3), it leads to a solution that

4'ij = uij = dij = À
p

4t; (B.7)

and

pij =
1

2
+

q
³
'ij

´ p4t

2À
: (B.8)

Since pij is a probability, we must require that 0 � pij � 1. This implies that

jq
³
'ij

´
j � Àp4t

: (B.9)

Combining equations (B.2), (B.4), (B.5), (B.6), and (B.9), we can derive the upper and lower

boundaries of the lattice tree such that

'min � ' � 'max; (B.10)

where

'min =

¯̄
¯̄
¯̄¡

Ã
¾r

2¸
p4t

!
+

s
¾2r (1 ¡ ¸¢t)

4¸2¢t
+ µ

¯̄
¯̄
¯̄ ; (B.11)

'max =

¯̄
¯̄
¯̄

Ã
¾r

2¸
p4t

!
+

s
¾2r (1 ¡ ¸¢t)

4¸2¢t
+ µ

¯̄
¯̄
¯̄ : (B.12)
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Notes

1Appendix A presents Deng, Quigley, and Van Order’s estimation approach brie‡y.

2As shown in Appendix A, these …xed e¤ects are transformed baseline hazard functions.

3The de…nition and computation of the LATPOPTION will be discussed in section 2.3.

4Appendix B summarizes Tian’s SBP approach.

5In this analysis, I use the regional average interest rate charged by lenders on new …rst mortgages

reported by Freddie Mac’s quarterly market survey as the relevant current market rate.

6In section 2.2, I used ¿ i to denote the age of the ith individual loan. I drop the loan record

index i here to avoid confusion with the index i which is used here to denote interest rate jump

steps.

7During the implementation process, I set up a check point to avoid redundant computation at

those branches where the associated probabilities are zero.

8Note that SPE only requires evaluating LATPOPTION at the point when the loan is ter-

minated or censored, while CPL requires computing such option value covariates and other time-

varying covariates for the whole path of the loan history. That makes the computation impossible

if we use CPL to estimate this model.

9It excludes those observations which were in delinquency or foreclosure at the time data were

collected.

10LOGPNEQ is the logarithm of PNEQ and scaled by a factor of 0.01. From equation (1.5), we

can see that the default hazard function is now a product of baseline hazard function, PNEQ, and

an exponential function of other covariates. Therefore, with this specifwhen PNEQ approaches
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zero, the probability of default approaches zero too.

11The simulations are based on estimates from model 1 in Table 2, and model 4 in Table 3. I use

Freddie Mac’s interest rate model to generate 300 random paths of mortgage interest rates. The

mean value of the house price in‡ation rate is set at ten percent annually and the mean level of the

mortgage contract rate is set at ten percent. The mean value of unemployment rate is set at eight

percent. Initial loan-to-value ratio is 80 percent.

12Note that results may vary depending on the assumption about the interest rate term structure

model, i.e., the assumption of mean level of the interest rate, the rate of convergence toward mean,

the volatility of the interest rate movement, and the length of the sub-interval.

13These results also persisted in a variety of other speci…cations not reported here. In general,

the predicted cumulative prepayment rates at the end of year 15 is about nine per cent lower in

models with a deterministic term structure than that in models with a stochastic term structure.

On the other hand, the predicted cumulative default rates at the end of year 15 is about 16 per

cent higher in models with a deterministic term structure than that in models with a stochastic

term structure.

14Note the risk set of the conditional hazard rates includes not only the individuals that have

the same failure type and whose durations are greater than the current one, but also all those

individuals with a di¤erent failure type and whose durations are greater than the current one.

Furthermore, the risk set also includes those right-censored observations with durations greater

than the current one.
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